RNA 3D structure prediction: (1) assessing rna 3D structure similarity from 2D structure similarity.

نویسندگان

  • Jaime E Barreda D C
  • Yoshimitsu Shigenobu
  • Eiichiro Ichiishi
  • Carlos A Del Carpio M
چکیده

Computational techniques for 3D structure prediction of proteins, the holy grail of bioinformatics, have undergone major developments in recent years, geared by international cooperation and competition with CASP (Critical Assessment of Structure Prediction Techniques) like contests to improve and refine them. Although straightforward extrapolation of these methodologies for the prediction of the 3D structures of other similarly relevant bio macromolecules may not be too compelling due mostly to the intrinsic differences in constitution, nature, and function between them, the conceptual framework underlying most of those techniques applied to the development of similar computational techniques in structural biology can lead to efficient systems for prediction of the 3D structure of other bio-macromolecules. One of them is the development of rational methodologies to model RNA 3D structures from the sequence of nucleotides composing them. In this paper we establish the fundamentals of a methodology to thread a sequence of nucleotides into a set of 3D fragments extracted from a data base expressly developed for this purpose. The technique is based on a newly implemented algorithm for extraction of 3D fragments by comparison of secondary structures of RNA. The result is a highly efficient system to produce a set of fragments from which entire RNA structure for the given nucleotide sequence can be built.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAG-3D: a search tool for RNA 3D substructures

To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool...

متن کامل

SMMRNA: a database of small molecule modulators of RNA

We have developed SMMRNA, an interactive database, available at http://www.smmrna.org, with special focus on small molecule ligands targeting RNA. Currently, SMMRNA consists of ∼770 unique ligands along with structural images of RNA molecules. Each ligand in the SMMRNA contains information such as Kd, Ki, IC50, ΔTm, molecular weight (MW), hydrogen donor and acceptor count, XlogP, number of rota...

متن کامل

General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers

Screening compounds for human ether-à-go-go-related gene (hERG) channel inhibition is an important component of early stage drug development and assessment. In this study, we developed a high-confidence (p-value < 0.01) hERG prediction model based on a combined two-dimensional (2D) and three-dimensional (3D) modeling approach. We developed a 3D similarity conformation approach (SCA) based on ex...

متن کامل

RNA 3D Modules in Genome-Wide Predictions of RNA 2D Structure

Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational approaches have two main challenges: they are computationally expensive and they have a relatively hig...

متن کامل

Physics-based de novo prediction of RNA 3D structures.

Current experiments on structural determination cannot keep up the pace with the steadily emerging RNA sequences and new functions. This underscores the request for an accurate model for RNA three-dimensional (3D) structural prediction. Although considerable progress has been made in mechanistic studies, accurate prediction for RNA tertiary folding from sequence remains an unsolved problem. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2004